Ta có: \(\widehat{ABD}=\widehat{DBC}\)(BD là phân giác của góc ABC)
\(\widehat{EDB}=\widehat{DBC}\)(hai góc so le trong, ED//BC)
Do đó: \(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
Ta có: \(\widehat{ABD}=\widehat{DBC}\)(BD là phân giác của góc ABC)
\(\widehat{EDB}=\widehat{DBC}\)(hai góc so le trong, ED//BC)
Do đó: \(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
Cho tam giác ABC. Tia phân giác góc B cắt cạnh AC tại D. Qua D kẻ đường thẳng song song với BC, nó cắt cạnh AB tại E. Chứng minh tam giác EBD cân.
CHo tam giác ABC. Phân giác của góc B cắt cạnh AC tại điểm D. Qua D kẻ một đường thẳng cắt cạnh AB tại điểm E sao cho góc EBD=EBD. Qua E kẻ đường thẳng song song với BD, đường thẳng này cắt cạnh AC tại điểm F.
a) Chứng minh ED // BC
b) Chứng minh EF là tia phân giác của góc AED
Cho tam giác ABC. Vẽ tia phân giác của B cắt AC tại D. Qua P, kẻ 1 đường thẳng cắt AB tại Esao cho góc EDB = góc EBD. Qua E kẻ đường thẳng song song BD. Đường thẳng này cắt AC tại F. Hỏi ED có song song vs BC không Vì sao, chứng minh EF là tia phân giác góc AED
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Cho tam giác ABC (AB < AC). Gọi Ax là tia phân giác của góc A. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia Ax, cắt tỉa AB tại M và cắt AC tại N. a) Chứng minh AAMN cân. b) Qua B kẻ đường thẳng song song với AC cắt MN tại E. Chứng minh BE = CN. c) Giả sử AB = 5cm, AC = 7cm. Tính AM và BM.
cho tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.
a) CM AE=ED=DF=FA
b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.
c) CM BP=CQ
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M
a) Chứng minh ∆ A M B = ∆ A M C .
b) Kẻ M E ⊥ A B ( E ∈ A B ) , M F ⊥ A C ( F ∈ A C ) . Chứng minh tam giác AEF cân.
c) Chứng minh A M ⊥ E F .
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I Chứng minh BE = BI
Cho tam giác ABC cân tai A, CD là tia phân giác của của góc C ( D thuộc AB). Qua D, kẻ 1 đường thẳng vuông góc với CD cắt BC tại F. Đường thẳng kẻ qua D song song với BC cắt AC tại E, tia phân giác góc BAC cắt DE tại M.
a) CM : CF = 2BD
b) CM : MD = 1/4 CF
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE