Cho tam giác ABC có ba góc nhọn. Vẽ hai đường cao BD và CE của tam giác ABC cắt nhau tại H
a) Chứng minh : tam giác EHB đồng dạng với tam giác DHC
b) Vẽ AH cắt BC tại F. Chứng minh : AF vuông góc với BC và BC.BD=BF.BC
c) Chứng minh : BH.BD+CH.CE=BC^2
cho tam giác nhọn abc. Các đường cao BD, CE cắt nhau tại H. Kẻ BI, CK cùng vuông góc với DE (I, K thuộc DE).
a) Chứng minh: AE.AB = AD. AC
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c)Gọi M là trung điểm BC. Kẻ MI vuông góc ED tại N. Chứng minh NI = NK và EI =DK
d) đường thẳng AD cắt BC tại F. Kẻ FP vuông góc ED tại P. CHứng minh PF là tia phân giác BPC
CHo tam giác ABC có ba góc nhọn AB < AC, hai đường cao BD và CE cắt nhau tại H, trên nửa mặt phẳng BC không chứa đỉêm E vẽ tia Dx sao cho góc EDB = GÓC BDx = góc ECB, Dx cắt EC,BC tại I,K, chứng mi h A,H,K thẳng hàng,,
cho tam giác ABC có 3 góc nhọn, các đường cao BD, CE của tam giác cắt nhau tại H. chứng minh rằng:
a) tam giác ABC đồng dạng với tam giac ACE
b) HE.HC=HD.HB
c) kẻ đường vuông góc với AB tại B đường vuông góc voi AC tại C cắt nhau tại K. gọi M là trung điểm cua BC. chứng minh: ba điểm H,M,K thẳng hàng
Cho tam giác abc có ba góc nhọn hai đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng:
1. góc AED= góc ACB
2.BH*BD+CH*CE=BC^2
Cho tam giác ABC có 3 góc nhọn, các đường cao BD,CE của tam giác cắt nhau tại H. Chứng minh rằng :
a) Tam giác ABD đồng dạng với tam giác ACE.
b) HE.HC=HD.HB.
c) Kẻ đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tạ K. Gọi M là trung điểm của BC. Chứng minh: Ba điểm H,M,K thẳng hàng.
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC, E thuộc AB)
a) Chứng minh rằng tam giác BHE đồng dạng với tam giác CHD
b) Chứng minh AB.AE = AC.AD
c) Chứng minh góc AED = góc ACB
cho tam giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H,AH cắt BC tại F,kế FI vuông góc với AC.trên tia đối tia AF
lay diem N sao cho AN=AF.Chứng minh NI vuông góc với FM.
cho tam giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H.
a) CM: HD.HB=HE.HC
b) AH cắt BC tại F. kẻ FI vuông góc với AC tại I. CM: IF/IC=FA/FC
a) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm của IC. chứng minh NI vuông góc với FM