a: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAE}\)
AE chung
Do đó: ΔABE=ΔACE
b: ta có: ΔABC cân tại A
mà AE là tia phân giác của góc BAC
nên AE là đường trung trực của BC
a: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAE}\)
AE chung
Do đó: ΔABE=ΔACE
b: ta có: ΔABC cân tại A
mà AE là tia phân giác của góc BAC
nên AE là đường trung trực của BC
Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng:
a. ∆ABE = ∆ACE
b. AE là đường trung trực của đoạn thẳng BC
Bài 6. Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng:
a. ∆ABE = ∆ACE
b. AE là đường trung trực của đoạn thẳng BC.
Bài 6. Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng:
a. ∆ABE = ∆ACE
b. AE là đường trung trực của đoạn thẳng BC.
cho tam giác ABC có AB=AC. Kẻ AE là tia phân giác của góc BAC(D thuộc BC).chứng minh rằng
a)tam giác ABE= tam giác ACE
b)AE là đường trung trực của đoạn thẳng BC
Cho \(\Delta ABC\)có AB = AC. Kẻ AE là phân giác của goác BAC( E thuộc BC). Chứng minh rằng:
a) \(\Delta ABE\)= \(\Delta ACE\)
b) AE là đường trung trực của đoạn thẳng BC
cho ABC có AB = AC . kẻ AE là phân giác của góc BÃ (E thuộc BC ) . chúng minh
a) tam giác ABE = tam giác ACE
b) AE là đường trung trực của đoạn thẳng BC
cho tam giác ABC có AB = AC. Kẻ AE là phân giác góc BAC ( E thuộc BC )
a) CMR : tam giác ABE = tam giác ACE
b) AE là đường trung trực của BC
GIÚP TỚ VỚI Ạ!!
1.Cho tam giác ABC có AB=AC . Kẻ tia phân giác AD của góc BAC (D thuộc BC).Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC.Chứng minh rằng:
a)Tam giác ABE=Tam giác ACE
b)AE là đường trung trực của đoạn thẳng BC
2.Cho tam giác ABC có AB<AC .Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng :
a)Tam giác ADF=Tam giác ACD
b)Tam giác BDF=Tam giác EDC
c)BF=AC
d)AD vuông góc FC
Cho tam giác ABC có AB=AC . Kẻ AE là phân giác của góc BAC (E thuộc BC ) Chứng minh ABE= ACE