Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Van Hung

Cho a;b;c > 0.Chứng minh \(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\le\frac{3}{2}\)

Trí Tiên亗
20 tháng 2 2020 lúc 9:49

Theo e nghĩ là đề phải như này cơ ạ :

\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)

Biến đổi và sử dụng Cô - si là sẽ ra :

Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)

\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
tth_new
20 tháng 2 2020 lúc 13:28

Đề không sai đâu:P

\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)

\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Minh Tuyền
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
phan tuấn anh
Xem chi tiết
Wakanda forever
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Thị Hương Đoàn
Xem chi tiết
Không Tên
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Baek Hyun
Xem chi tiết