Cho 3 số thực dương a,b,c thoả mãn abc=1.CMR \(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{2}\)
cho a,b,c>0 thỏa mãn: a+b+c=1 CMR:
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+\sqrt[3]{abc}\ge\frac{10}{9\left(a^2+b^2+c^2\right)}\)
Cho a,b,c >0 thỏa mãn abc=1. CMR: \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
cho a,b,c > 0 thỏa mãn abc=1.CMR
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a,b,c>0 thoả mãn \(a^2+b^2+c^2=1\)
CMR : \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^2+3ac+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)
cho a,b,c,d >0 thoả mãn a+b+c+d = 4
cmr \(\frac{a}{1+b^2}\)+ \(\frac{b}{1+c^2}\)+\(\frac{c}{1+d^2}\)+ \(\frac{d}{1+a^2}\)\(\ge\)2
Với a,b,c > 0 thỏa mãn abc = 1 . CMR:
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
cho 3 số a,b,c>0 thoả mãn
\(a^2+b^2+c^2=\frac{7}{5}\)
cmr \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
gấp lắm