Cho a + b + c + d = 0. Tính \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right);N=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
Cho \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\).CM \(\dfrac{a^2}{\left(b-c\right)^2}+\dfrac{b^2}{\left(c-a\right)^2}+\dfrac{c^2}{\left(a-b\right)^2}=0\)
E=\(\left(\dfrac{2}{1+2x}+\dfrac{4x^2}{4x^2-1}-\dfrac{1}{1-2x}\right):\left(\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)\)
a,Rút gọn
b,tính x để E>3
c,Tính Min B
Cho a-b+c=-4. Tính B = \(\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
So sánh A và B :
A = \(\dfrac{\left(2^3+1\right).\left(3^3+1\right).\left(4^3+1\right)...\left(100^3+1\right)}{\left(2^3-1\right).\left(3^3-1\right).\left(4^3-1\right)...\left(100^3-1\right)}\)
B = 1,5
tìm các số a và b sao cho phân thức \(\dfrac{x^2+5}{x^3-3x-2}\)viết được thành \(\dfrac{a}{x-1}+\dfrac{b}{\left(x+1\right)^2}\)
Cho \(\left[{}\begin{matrix}x,y,z\ne0\\x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\\x^3+y^3+z^3=1\end{matrix}\right.\).Tính A=\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Cho a + b + c= 3
Tính A=\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^{ }2}\)
cho \(\dfrac{x^2-3x}{x.\left(1-3y\right)}=\dfrac{y^2-3x}{y.\left(1-3x\right)}\).CM \(\dfrac{8}{3}+x+y=\dfrac{1}{x}+\dfrac{1}{y}\)