Ta có: \(a+b=1\)
\(\Leftrightarrow\left(a+b\right)^2=1\)
\(\Leftrightarrow a^2+b^2+2ab=1\)
\(\Leftrightarrow a^2+b^2-2\cdot3=1\)
\(\Leftrightarrow a^2+b^2=1+6=7\)
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=7-\left(-3\right)\)
\(=7+3=10\)