Ta có : \(P=\frac{a-b}{a+b}\Rightarrow P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)
(Vì P > 0 và a>b>0)
3a2+3b2=10ab =>( 3a2 - 9ab ) - ( ab - 3b2 ) = 0 => 3a(a - 3b) - b(a - 3b) = 0 => (a-3b)(3a-b) = 0.
Mà a> b > 0 => 3a - b = 0 => 3a = b.
Do đó: P = ( a - b )/( a + b ) = ( a - 3a )/( a + 3a )=-2a/4a=-1/2.