Do a ; b > 0 , áp dụng BĐT Cô - si cho 2 số dương , ta có :
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\)
\(\Rightarrow2\left[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\right]\ge\left(a+\frac{1}{a}+b+\frac{1}{b}\right)^2\)
\(\Rightarrow2A\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)
Vì a ; b > 0 \(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow2A\ge\left(1+\frac{4}{a+b}\right)^2=\left(1+4\right)^2=25\)
\(\Rightarrow A\ge\frac{25}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)