Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Tuấn Việt

Cho a,b,c thỏa mãn a + b + c = \(\frac{1}{2}\) và (a + b)(b + c)(c + a) khác 0

Tính giá trị của P = \(\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ca+b}{\left(c+a\right)^2}\)

Anh Thư Đinh
23 tháng 1 2017 lúc 10:56

Ta có: \(a+b+c=\frac{1}{2}\) \(\Rightarrow\left\{\begin{matrix}a=\frac{1}{2}-b-c\\b=\frac{1}{2}-a-c\\c=\frac{1}{2}-a-b\end{matrix}\right.\) hay \(\left\{\begin{matrix}a+b=\frac{1}{2}-c\\b+c=\frac{1}{2}\\a+c=\frac{1}{2}-b\end{matrix}\right.\)

\(P=\frac{\left(2ab+c\right)\left(2bc+a\right)\left(2ac+b\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)

\(=\frac{\left(2ab+\frac{1}{2}-a-b\right)\left(2bc+\frac{1}{2}-b-c\right)\left(2ca+\frac{1}{2}-a-c\right)}{\left(\frac{1}{2}-c\right)\left(\frac{1}{2}-a\right)\left(\frac{1}{2}-c\right)\left(\frac{1}{2}-b\right)\left(\frac{1}{2}-a\right)\left(\frac{1}{2}-b\right)}\)

\(=\frac{2\left(ab+\frac{1}{4}-\frac{1}{2}a-\frac{1}{2}b\right).2\left(bc+\frac{1}{4}-\frac{1}{2}b-\frac{1}{2}c\right).2\left(ca+\frac{1}{4}-\frac{1}{2}a-\frac{1}{2}c\right)}{\left(ac+\frac{1}{4}-\frac{1}{2}a-\frac{1}{2}c\right)\left(bc+\frac{1}{4}-\frac{1}{2}b-\frac{1}{2}c\right)\left(ab+\frac{1}{4}-\frac{1}{2}a-\frac{1}{2}b\right)}\)

\(=2.2.2=8\)

Vậy với \(a+b+c=\frac{1}{2}\)\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\) thì \(P=8\)

Anh Anh
22 tháng 1 2017 lúc 15:28

8

Thanh  Quốc
14 tháng 2 2017 lúc 9:37

8


Các câu hỏi tương tự
Nguyễn Huế Anh
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết
Trần Quý
Xem chi tiết
mr. killer
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Qynh Nqa
Xem chi tiết
Xuan Xuannajimex
Xem chi tiết
Linh Nhi
Xem chi tiết