Câu 1:
Cho x=\(\frac{b^2+c^2-a^2}{2bc}\);y=\(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
Tính giá trị P=x+y+xy
Câu 2:
Giải phương trình:
a) \(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{x}\)(x là ẩn số)
b)\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}\)+\(\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}\)+\(\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}\)=0
(a, b, c là hằng số và đôi một khác nhau)