Ta có:3a2-10ab+3b2=0 nên 4a2 -8ab+4b2-a2-b2-2ab =0;
=> (2a-2b)2-(a2 +2ab+b2) =0 bạn đóng ngoặc trước dấu trừ nên phải đổi dấu nhé;
=>(2a-2b)2=(a+b)2 hai phân số bằng nhau có cùng số mũ nên cơ số phải bằng nhau :
=>2(a-b)=a+b (1);
Thay (1) vào biểu thức trên ta có:\(\frac{a-b}{2\left(a-b\right)}=\frac{1}{2}\)k nha bạn
Đặt \(M=\frac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(3a^2+3b^2-10ab=0\)
\(4a^2-a^2+4b^2-b^2-8ab-2ab=0\)
\(\left[\left(2a\right)^2-2\cdot2a\cdot2b+\left(2b\right)^2\right]-\left(a^2+2ab+b^2\right)=0\)
\(\left(2a-2b\right)^2-\left(a+b\right)^2=0\)
\(\left(2a-2b\right)^2=\left(a+b\right)^2\)
TH1: \(2a-2b=a+b\)
\(\Leftrightarrow2a-2b-a-b=0\)
\(\Leftrightarrow a-3b=0\)
\(\Leftrightarrow a=3b\)
Thay a = 3b vào M ta có :
\(M=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)
TH2: \(2a-2b=-a-b\)
\(\Leftrightarrow2a-2b+a+b=0\)
\(\Leftrightarrow3a-b=0\)
\(\Leftrightarrow3a=b\)
Thay b = 3a vào M ta có :
\(M=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)
Vậy \(M\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)
P.s: Trịnh Hữu An thiếu t/h nha bạn
ta có \(\frac{\left(a-b^2\right)}{\left(a+b\right)^2}\)=\(\frac{a^2-2ab+b^2}{a^2+2ab+b^2}\)=\(\frac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2}\)=\(\frac{10ab-6ab}{10ab+6ab}\)=\(\frac{4ab}{16ab}\)=\(\frac{1}{4}\)(
bài này là mình tìm được trong một cuốn sách mời các bạn tham khảo cách làm ở đây ạ
"23 chuyên đề giải 1001 bài toán sơ cấp"
ở trong mục "chuyên đề biến đổi đồng nhất"
các cậu thử tham khảo xem ạ
bài làm của mình còn thiếu một bước do mình bình phương lên quên chưa khai phương nó ra nên kết quả cuối cùng phải là
\(\sqrt{\frac{1}{4}}\)=\(\frac{1}{2}\)