Cho a,b>0. CM: (1+a)[1+b)^2)] lớn hơn hoặc bằng (1+căn ab)^3
(Dùng BĐT)
1. a,b>0, a+b<=1. tìm min P= 1/(a^3+b^3)+1/a^2b+ab^2 ( Dùng BĐT cộng mẫu cho 3 số)
2. a,b,c>0, a^2+b^2+c^2>=1. tìm min P= a+b+c+1/abc
3. x,y,z>0, 1/x+1/y+1/z=4. tìm min P= 1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z)
Không dùng bđt Cô-si cho 3 số ko âm
Cho a,b,c>0 Chứng minh
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>=\frac{9}{a+b+c}\)
CHo x,y>0 và x+y=1
cm A=\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\)
Không dùng BĐT AM-GM nhé
1,cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
2,CHo a,b,c>0 thỏa mãn a+b+c <= ab+bc+ca
CMR: \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le1\)
3, Cho a,b,c>0 thoaor mãn a+b+c=3
CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Dùng bđt bunhiacopxki nha
cho a,b,c>0, dùng bđt cô si để chứng minh:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
Bài 1: Cho a,b,c>0 thỏa a+b+c=1. CMR √5a+4+√5b+4+√5c+4≥75a+4+5b+4+5c+4≥7.
Bài 2: Cho a,b khác 0. CMR a2/b2 + b2/a2 +4 >= 3(a/b+b/a)
Bài 3: Tìm GTNN của Q=√2x2+2x+1+√2x2−8x+102x2+2x+1+2x2−8x+10 . ( Dùng bđt mincopxki).
Bài 4: Cho a,b>0. CMR ab2+ba2+16a+b≥5(1a+1bb)
b1 cm
\(a^2+b^2+1\ge ab+a+b\) \(\forall a;b\)
b2 cm bđt
\(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c-1\right)\)
cm \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y;\forall x,y>0\)
cho a,b,c>0,abc=1.cm a+b+c>= \(\frac{1+a}{1+b}\)+\(\frac{1+b}{1+c}\)+\(\frac{1+c}{1+a}\)
AI GIỎI BĐT GIẢI GIÚP E VỚI
MAI E ĐI HOK RỒI
E TÍCH CHO.