PTHĐGĐ là:
x^2-2x-3=0
=>x=3 hoặc x=-1
=>A(3;9); B(-1;1)
(d')//(d)
=>(d'): y=2x+b
PTHĐGD là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (P) tiếp xúc (d') thì 4b+4=0
=>b=-1
=>y=2x-1
Tiếp điểm là C(1;1)
=>3x+5y=8
PTHĐGĐ là:
x^2-2x-3=0
=>x=3 hoặc x=-1
=>A(3;9); B(-1;1)
(d')//(d)
=>(d'): y=2x+b
PTHĐGD là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (P) tiếp xúc (d') thì 4b+4=0
=>b=-1
=>y=2x-1
Tiếp điểm là C(1;1)
=>3x+5y=8
Gọi A và B là 2 giao điểm của parabol (P):y=1/2x^2 và đường thẳng (d):y=1/2x-3. Hãy viết pt đường thẳng (d') tiếp xúcvới parabol (P) tại C sao cho tam giác ABC có diện tích lớn nhất
Cho parabol (P): y=x2 và đường thẳng (d): y= -x+2
a) vẽ (p) và (d) trên hệ trục tọa độ Oxy
b) tìm tọa độ giao điểm A,B của (P) và (d)
c)tìm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất
Cho parabol (P): y=x2 và đường thẳng (d): y= -x+2
a) vẽ (p) và (d) trên hệ trục tọa độ Oxy
b) tìm tọa độ giao điểm A,B của (P) và (d)
c)tìm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất
cho parabol (P) y=x^2 và đường thẳng (đ) y= -x +2
tìm tọa độ điểm M trên cung AB của đồ thị (P) sao cho tam giác AMB có diện tích lớn nhất
Cho parabol (P): y = 1/4x^2 và đường thẳng (D) qua 2 điểm A và B trên (P) có hoành độ lần lượt là -2 và 4 a) Khảo sát sự biến thiên b) Viết phương trình của (D) c) Tìm điểm M trên cung AB của (P) (tương ứng hoành độ) x € [-2;4] sao cho tam giác MAB có diện tích lớn nhất
Cho Parabol (P): \(y=x^2\) và đường thẳng (d): \(y=2x+3\) .
a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A, B và xác định tọa độ của A và B.
b) Xác định điểm C có hoành độ dương thuộc cung nhỏ OB của Parabol (P) sao cho diện tích tam giác ABC lớn nhất.
XIN MỌI NGƯỜI GIẢI TRƯỚC 6H45 !!!!
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Cho Parabol (P) :\(y=\frac{1}{4}x^2\)và đường thẳng (d) : \(y=-\frac{1}{2}x+2\). Gọi A và B là các giao điểm của (P) và(d). Tìm tọa độ của điểm M thuộc cung AB của (P) sao cho diện tích tam giác AMB lớn nhất. Giải giúp mk vs ik nha,mk tick 5 cái luôn
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và đường thẳng (d): y = 2x + m (m là tham số).
b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).