Theo bài ta có :
\(\left\{{}\begin{matrix}a=5k+2\\b=5k_1+3\end{matrix}\right.\)
\(\Leftrightarrow ab=\left(5k+2\right)\left(5k_1+3\right)=25k.k_1+15k+10k_1+6=5\left(k.k_1+3k+1\right)+1\)
Vì \(5\left(k.k_1+3k+1\right)⋮5\)
\(\Leftrightarrow5\left(k.k_1+3k+1\right)+1\) chia 5 dư 1
\(\Leftrightarrow ab\) chia 5 dư 1
Vì a chia 5 dư 2 => \(a=5m+2\left(m\in N^{ }\right)\)
Vì b chia 5 dư 3 => \(b=5n+3\left(n\in N^{ }\right)\)
Khi đó:
\(ab=\left(5m+2\right)\left(5n+3\right)=25mn+15m+10n+6=25mn+15m+10n+5+1\)
Ta thấy: \(25mn+15m+10n+5⋮5\) =>\(25mn+15m+10n+5+1\)chia 5 dư 1 hay ab chia 5 dư 1Đặt a=5k+2
b=5k+3
Ta có : ab=5k+6 mà 5k+5\(⋮\) 5
=>ab chia 5 dư 1(dfcm)