(a+b)(ab+1)-4ab =a2b+a+ab2+b-4ab=(a2b-2ab+b)+(ab2-2ab+a)=b(a2-2a+1)+a(b2-2b+1)=b(a-1)2+a(b-1)2 lon hon hoac bang 0 vi b(a-1)2 và a(b-1)2 lon hon hoac bang 0 voi moi a,b lon hon hoac bang 0=> dieu phai chung minh.
(a+b)(ab+1)-4ab =a2b+a+ab2+b-4ab=(a2b-2ab+b)+(ab2-2ab+a)=b(a2-2a+1)+a(b2-2b+1)=b(a-1)2+a(b-1)2 lon hon hoac bang 0 vi b(a-1)2 và a(b-1)2 lon hon hoac bang 0 voi moi a,b lon hon hoac bang 0=> dieu phai chung minh.
cho a+b+c=0
Chứng minh \(a^4+b^4+c^4\)=2\(\left(ab+ac+bc\right)^2\)
Cho ba số a; b; c thoả mãn 0
Chứng minh: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}< \dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)
Cho a,b >0 thỏa mãn a+b <= 1. Chứng minh \(\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\) lớn hơn hoặc = 11
cho K=ab+4ab -4bc với a,b,c là các số không âm thỏa mãn a+b+2c=1
a) Chứng minh K ≥ - \(\dfrac{1}{2}\)
b) Tìm giá trị lớn nhất của K
chứng minh rằng:
(2a2+a)(2b2-b)-ab(4ab-1) chia hết cho 2 với a,b thuộc N
Cho x,y,a,b thỏa mãn
\(\frac{x^2+y^2}{a^2+b^2}\)= \(\frac{x^2}{a^2}\)+\(\frac{y^2}{b^2}\),a,b\(\ne\)0
Chứng minh x=y=0
Chứng minh rằng: ( a + b ) 2 - ( a - b ) 2 = 4 a b . Từ đó tính: ( a + b ) 2 biết a - b = 3 và ab = 4.
Chứng minh rằng: ( a + b ) 2 - ( a - b ) 2 = 4 a b . Từ đó tính: ( a + b ) 2 biết a + b = 6 và ab = 8
1. cho a,b>0 CMR (a+b)(ab+1)>=4ab