Áp dụng BĐT cô -si \(\left(ab\le\frac{\left(a+b\right)^2}{4}\right)\) ta có :
\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+b+2\sqrt{ab}\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{8}\)
<=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)
<=> \(ab\left(a+b\right)^2\le\frac{1}{64}\)
Dấu '' = '' xảy ra khi a = b = \(\frac{1}{4}\)
BPT <=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)
\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+2\sqrt{ab}+b\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}\)