Kim Taehyung

Cho a,b > 0; a+b+c=3. Tìm Min P = \(\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)

tth_new
25 tháng 9 2019 lúc 8:20

Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a =b =c = 1.

True?

Bình luận (0)
Nguyễn Hoàng Bảo Nhi
18 tháng 4 2020 lúc 10:41

Ta có : 

\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)

\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu = xảy ra khi  a=b=c=1 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thiều Công Thành
Xem chi tiết
ANBU Hắc
Xem chi tiết
nana
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Nguyễn Đặng Bảo Trâm
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết