Cho B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2(Với a;b;c là độ dài ba cạnh tam giác). Chứng minh: B<0
GIÚP MÌNH PLZ
Cho x=9a+4b+8c , y=4a+b+4c , z=8a+4b+7c
Chứng minh rằng : Nếu a,b,c là 3 cạnh của tam giác vuông thì x,y,z cũng là ba cạnh của tam giác vuông.
cho biểu thức A =\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\).CMR nếu a,b,c là 3 cạnh của một tam giác thì A>0
cmr nêu a;b;c là 3 cạnh của tam giác thì A= 2a^2b + 2b^2a^2 +2a^2c^2 - a^4 - b^4-c^4>0
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
Chứng minh \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
CMR: NẾU a,b,c là độ dài các cạnh của tam giác thì:
B=\(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2< 0\)
Chứng minh rằng nếu a, b, c là số đo của ba cạnh một tam giác vuông với a là độ dài cạnh huyền thì các số x = 9a + 4b + 8c; y = 4a + b + 4c; z = 8a + 4b + 7c cũng là số đo các cạnh của một tam giác vuông khác.
phân tích ĐTTNT :A=2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4. nếu a,b,c là độ dài 3 cạnh tam giác thì CM A >0
CM RẰNG : Nếu A,B,C là độ dài 3 cạnh tam giác thì B =\(A^4+B^4+C^4-2A^2B^2-2B^2C^2-2C^2A^2\)