\(A=4x^2-5xy+3y^2\\\Rightarrow 2A=2\cdot(4x^2-5xy+3y^2)\\\Rightarrow2A=8x^2-10xy+6y^2\\B=3x^2+2xy+y^2\\\Rightarrow3B=3\cdot(3x^2+2xy+y^2)\\\Rightarrow3B=9x^2+6xy+3y^2\\C=-x^2+3xy+2y^2\)
Khi đó: $2A-3B-C$
$=(8x^2-10xy+6y^2)-(9x^2+6xy+3y^2)-(-x^2+3xy+2y^2)$
$=8x^2-10xy+6y^2-9x^2-6xy-3y^2+x^2-3xy-2y^2$
$=(8x^2-9x^2+x^2)+(-10xy-6xy-3xy)+(6y^2-3y^2-2y^2)$
$=-19xy+y^2$
2A-3B-C
\(=2\left(4x^2-5xy+3y^2\right)-3\left(3x^2+2xy+y^2\right)+x^2-3xy-2y^2\)
\(=8x^2-10xy+6y^2-9x^2-6xy-3y^2+x^2-3xy-2y^2\)
\(=-19xy+y^2\)