\(a)\) Ta có :
\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)
Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-2\) | \(2\) | \(-4\) |
Vậy \(n\in\left\{-4;-2;0;2\right\}\)
\(b)\)
* Tính GTLN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi )
Để đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN
\(\Rightarrow\)\(n+1=1\)
\(\Rightarrow\)\(n=0\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)
Vậy \(A_{max}=6\) khi \(n=0\)
* Tính GTNN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a )
Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN
\(\Rightarrow\)\(n+1=-1\)
\(\Rightarrow\)\(n=-2\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)
Vậy \(A_{min}=0\) khi \(n=-2\)
Chúc bạn học tốt ~
a) Ta có :
A = n + 1 3n + 6
= n + 1/ 3n + 3 + 3
= n + 1 /3n + 3 + n + 1 /3
= n + 1 /3 n + 1 + n + 1 /3
= 3 + n + 1 /3
Để A nguyên thì n + 1/ 3 phải nguyên ⇒3⋮ n + 1 ⇒ n + 1 ∈ Ư 3 Mà Ư 3 = 1; − 1;3; − 3 Suy ra : n + 1 /1 −1/ 3 −3 n 0 −2 2 −4
Vậy n ∈ {−4; − 2;0;2}