a: Đặt a/3=b/2=k
=>a=3k; b=2k
\(A=\dfrac{a^2-b^2}{a^2-3ab+2b^2}=\dfrac{9k^2-4k^2}{9k^2-3\cdot3k\cdot2k+8k^2}\)
\(=\dfrac{5k^2}{17k^2-18k^2}=-5\)
b:
\(\left\{{}\begin{matrix}\left(x+y\right)^2=25\\\left(x-y\right)^2=144\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2xy=25\\x^2-2xy+y^2=144\end{matrix}\right.\)
\(\Leftrightarrow-4xy=-119\)
hay xy=119/4
\(T=x^3-y^3-36xy\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)
\(=\left(-5\right)^3+3\cdot xy\cdot\left(-5\right)-36xy\)
\(=-125-15xy-36xy=-125-51xy\)
\(=-125-51\cdot\dfrac{119}{4}=-\dfrac{6569}{4}\)