a=3+32+33+....+3100
=>3a=32+33+....+3101
=>3a-a=32+33+....+3101 -(3+32+33+....+3100)
=>2a=32+33+....+3101-3-32-33-...-3100
=>2a=3101-3
=>2a+3=3101
mà theo đề 2a+3=3n
=>n=101
vậy n=101
a=3+32+...+3100
=>3a=32+33+...+3101=> 3a-a=2a=(32+33+...+3101)-(3+32+...+3100)=3101-3
\(\Rightarrow a=\frac{3^{101}-3}{2}\)
=>2a+3=\(2\times\frac{3^{101}-3}{2}+3=\left(3^{101}-3\right)+3=3^{101}-3+3=3^{101}-\left(3-3\right)=3^{101}-0=3^{101}\)
\(a=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3a=3^2+3^3+...+3^{101}\)
\(\Rightarrow3a-a=3^2+3^3+...+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2a=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\)
\(\Rightarrow2a=3^{101}-3\)
\(\Rightarrow2a+3=3^{101}\)
Mà theo đề bài \(2a+3=3^n\)
\(\Rightarrow n=101\)
Vậy \(n=101\)