Biến đổi vế trái
Ta có HĐT: \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)
\(VT=\left(5a-3b\right)^2-\left(8c\right)^2\) \(\)
\(\) \(==25a^2-30ab+9b^2-64c^2\)
Mà \(a^2-b^2=4c^2\Leftrightarrow c^2=\frac{a^2-b^2}{4}\)
Thay vào ta được:
\(VT=25a^2-30ab+9b^2-\frac{64.\left(a^2-b^2\right)}{4}\)
\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2-16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a\right)^2+2.3a.5b+\left(5b\right)^2\)
\(=\left(3a-5b\right)^2\)
VT=VP=> đpcm