\(AB=\sqrt{\left(1+8\right)^2+\left(3-1\right)^2}=\sqrt{9^2+2^2}=\sqrt{85}\)
\(AC=\sqrt{\left(1-2\right)^2+\left(3+1\right)^2}=\sqrt{17}\)
\(BC=\sqrt{\left(-7-2\right)^2+\left(1+1\right)^2}=\sqrt{85}\)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=2\sqrt{85}+\sqrt{17}\left(đvđd\right)\)
Nửa chu vi tam giác ABC là:
\(P_{ABC}=\dfrac{C_{ABC}}{2}=\dfrac{2\sqrt{85}+\sqrt{17}}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-AC\right)\cdot\left(P-BC\right)}\)
\(=\sqrt{\dfrac{2\sqrt{85}+\sqrt{17}}{2}\cdot\left(\dfrac{2\sqrt{85}+\sqrt{17}}{2}-\dfrac{2\sqrt{85}}{2}\right)^2\cdot\left(\dfrac{2\sqrt{85}+\sqrt{17}}{2}-\dfrac{2\sqrt{17}}{2}\right)}\)
\(=\sqrt{\dfrac{2\sqrt{85}+\sqrt{17}}{2}\cdot\dfrac{2\sqrt{85}-\sqrt{17}}{2}\cdot\dfrac{17}{4}}\)
\(=\sqrt{\dfrac{323\cdot17}{16}}=\dfrac{17\sqrt{19}}{4}\left(đvdt\right)\)