cho a,b>0 tìm gtnn \(\frac{4a^2-3ab-3a}{\left(b+1\right)2}+\frac{b+1}{4a}+2018\)
Cho a+b>=1 ,a>0.Tìm gtnn của M= (8a^2+b)/4a +b^2
cho a>1.tìm GTNN của M=\(\frac{4a^2}{a-1}\)
Cho a, b là các số thực dương thỏa mãn a + b = 4ab
Tìm GTNN của biểu thức \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}\)
Tìm a để \(\frac{3-4a}{1+a^2}\)đạt GTNN.. tìm GTNN đó
Tìm GTNN:
A = \(\sqrt{m^2+2m+1}+\sqrt{m^2-2m+1}\)
B = \(\sqrt{4a^2-4a+1}+\sqrt{4a^2-12a+9}\)
Cho a,b,c.0 thỏa mãn: a+2b+3c=4;
Tìm GTNN của biểu thức; P=4a=7b+10c+\(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)
Bài1 Cho a,b,c >0 và a+b+c = 1
Chứng minh: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 3\)
Bài 2: Cho x+y = 2 Tìm GTNN của A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Cho các số thực dương a;b;c thỏa mãn \(4a+3b+4c=22\). Tìm GTNN của biểu thức:
\(P=a+b+c+\frac{1}{3a}+\frac{2}{b}+\frac{3}{c}\)?