Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+1}+\sqrt{a+3}\right)\)
\(\le\left(1+1\right)\left(a+1+a+3\right)\)
\(=2\left(2a+4\right)=4\left(a+2\right)\)
\(\Rightarrow VT^2\le4\left(a+2\right)\Rightarrow VT\le\sqrt{4\left(a+2\right)}=VP\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+1}+\sqrt{a+3}\right)\)
\(\le\left(1+1\right)\left(a+1+a+3\right)\)
\(=2\left(2a+4\right)=4\left(a+2\right)\)
\(\Rightarrow VT^2\le4\left(a+2\right)\Rightarrow VT\le\sqrt{4\left(a+2\right)}=VP\)
cho a>0. so sánh \(\sqrt{a+1}\)+\(\sqrt{a+3}\) với \(2\sqrt{a+2}\)
bài 1: Cho biểu thức R = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{x-2\sqrt{x}}\right)\cdot\left(\frac{1}{\sqrt{x+2}}+\frac{4}{x-4}\right)\)
a/ rút gọn R
b/ Tính giá trị R khi x = 4 + \(2\sqrt{3}\)
c/ Tìm giá trị của x để R >0
bài 2 : Cho A = 6 + 2\(\sqrt{2}\), B = 9 . So sánh A,B .
bài 3 : Chứng minh:
a/ \(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)= a - b (với a >0, b>0, \(a\ne b\))
b/ \(\left(2+\frac{a-\sqrt{a}}{\sqrt{a-1}}\right)\cdot\left(2-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=4-a\)(với a >0, a\(\ne1\))
Cho A= \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\)
a) rút gọn B
b) Cho x>0. so sánh A với 3
1. CHỨNG MINH ĐẲNG THỨC
a. \(\text{[}3+2\sqrt{6}-\sqrt{33}\text{]}\cdot\text{[}\sqrt{22}+\sqrt{6}+4\text{]}=24\)
b. \(\text{[}\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\text{]}\cdot\text{[}15+2\sqrt{6}\text{]}\)
c.\(\text{[}\frac{4}{3}\cdot\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\text{]}\cdot\text{[}\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\text{]}=4\)
d. \(\sqrt{\text{[}1-\sqrt{1989}\text{]}^2}\cdot\sqrt{1990+2\sqrt{1989}}=1988\)
e. \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)với \(a>0;b>0\)và \(a\ne b\)
cho a>0 hãy so sánh \(\sqrt{a+1}+\sqrt{a+3}\)với \(2\sqrt{a+2}\)
1. Rút gọn biểu thức:
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)với a>1
b) \(\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\) với a>b
c) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)với \(a\ge0\)
d) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)với a>0
e) \(\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
Chứng minh \(\frac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\frac{ab+b^2-2\sqrt{ab^3}}{a\cdot\left(a+2\sqrt{b}\right)+b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=b\) với a > b > 0
1.a ) so sánh 1, 2 số a, b với : \(a=\sqrt{3}+\sqrt{7};b=\sqrt{19}\)
1.b) cho 2 biểu thức :
\(A=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}};B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
với x >0 ; y>0 ; x khác y
tính A, B
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)