Ta có: a + b chẵn và a,b nguyên tố cùng nhau nên a,b là hai số lẻ
*chứng minh P chia hết cho 8
Ta có (a + b) = 2k
a - b = a + b - 2b = 2k - 2b = 2(k - b)
Với k là số chẵn thì (a + b) chia hết cho 4, (a - b) chia hết cho 2
=> P chia hết cho 8
Với k là số lẻ thì (a + b) chia hết cho 2, (a - b) chia hết cho 4
=> P chia hết cho 8
Vậy ta có P chia hết cho 8 (1)
*Chứng minh P chia hết cho 3
Vì cả a, b đều là số lẻ nên a,b chia cho 3 dư 0 hoặc dư 1
Với 1 trong 2 số a,b chia hết cho 3 thì P chia hết cho 3
Với a,b chia cho 3 dư 1 thì (a - b) chia hết cho 3
Vậy P chia hết cho 3
Từ (1) và (2) kết hợp với việc 3 và 8 là hai số nguyên tố cùng nhau thì ta => P chia hết cho 24
alibaba nguyễn: Khi chứng minh P chia hết cho 3
a; b lẻ vx có thể chia 3 dư 2 chứ; vd như 5; 17; 29; ... chẳng hạn
t nghĩ lm thế này: Câu hỏi của letienluc - Toán lớp 6 | Học trực tuyến
Bổ xung phần bạn Tiểu góp ý.
Với a,b cùng chia cho 3 dư 2 thì (a - b) chia hết cho 3
Với a chia 3 dư 2,b chia 3 dư 1( hoặc ngược lại) thì (a + b) = 3m + 1 + 3n + 2 = 3m + 3n + 3 chia hết cho 3
Chị lấy ảnh đại diện của Jisoo thật là xinh quá đi.
cho a và b là hai số nguyên dương, ƯCLN (a,b)=1 và a+ b là số chẵn. Chứng minh rằng P=ab(a-b)(a+b) chia hết cho 24