Để a và b là số thực. Biết lim x → + ∞ ( a x + b - x 2 - 6 x + 2 = 3 thì tổng 2 a b + b + a 2 bằng
A. 1
B. -6
C. 7
D. -5
Tìm các số thực a, b thoả mãn:
\(\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left[\left(a^3+b^3\right)x^2-\left(x+a^2b\right)\sqrt{x^2+2\left(ab\right)^2}\right]}{x-b-1}\)
Cho biết : \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{ax^2+1}-bx-2}{x^3-3x+2}\left(a,b\in R\right)\) có kết quả là một số thực. Giá trị của biểu thức \(a^2+b^2\) ?
Biết \(\lim\limits_{x->+\infty}\) \(\left(\sqrt{25x^2+4\sqrt{2}+5}-5x\right)=\dfrac{a\sqrt{b}}{c}\) trong đó a,b,c là các số nguyên duơng, phân số \(\dfrac{a}{c}\) tối giản và \(a>1\). Tính \(S=a^2+b^2+c^2\)
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
Cho A(3;–2) ; B( 6; 9) và d: x+3y – 2 = 0. Nếu Đ d (A) = A’ , Đ d (B) = B’ thì A’B’ có độ dài bằng
A. 130
B. 130
C.11
D. Không đủ dữ kiện để tính
Tìm các số thực a, b thỏa mãn \(\lim\limits_{x\rightarrow1}\)\(\dfrac{2x^2+ax+b}{x^2+2x-3}=\dfrac{3}{4}\)
Câu 1.
a) (0,5 điểm). Tính giới hạn $\underset{x\to 1}{\mathop{\lim }}\,\dfrac{2\sqrt{x+3}+x-5}{x-{{x}^{2}}}$.
b) (0,5 điểm). Tìm các số thực $a, \, b$ thỏa mãn $\underset{x\to 1}{\mathop{\lim }}\,\left( \dfrac{{{x}^{2}}+ax+b}{{{x}^{2}}-1} \right)=-\dfrac{1}{2}.$
giải phương trình
a) \(2^x=2^{3x-1}\)
b) \(7^{x-5}=49\)
c) \(3^{5x-3}=1\)
d) \(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\)