Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai đầu mút phân biệt thuộc tập A là
A. 170
B. 160
C. 190
D. 360
Số các vecto khác vecto 0, có hai đầu mút trong số 6 điểm phân biệt A,B,C,D,E,F đã cho là:
A. 3
B. 6
C. 15
D. 30
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc P là:
Trong mặt phẳng có 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng
a) Số tam giác mà các đỉnh của nó thuộc tập hợp các điểm đã cho là:
A. A 18 3
B. C 18 3
C. 6
D. 18!/3
Trong mặt phẳng cho một tập hợp gồm 6 điểm phân biệt. Có bao nhiêu vectơ khác vectơ 0 → có điểm đầu và điểm cuối thuộc tập hợp điểm này?
A. 15
B. 12
C. 1440
D. 30
Trong mặt phẳng có 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng
b) Số vecto có điểm đầu và điểm cuối thuộc tập điểm đã cho là:
A. A 18 2
B. C 18 2
C. 6
D. 18!/2
Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua hai điểm A và B là
A. Mặt phẳng song song với đường thẳng AB.
B. Trung điểm của đoạn thẳng AB.
C. Đường thẳng trung trực của đoạn thẳng AB.
D. Mặt phẳng trung trực của đoạn thẳng AB.
Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua hai điểm A và B là
A. Mặt phẳng song song với đường thẳng AB.
B. Trung điểm của đoạn thẳng AB.
C. Đường thẳng trung trực của đoạn thẳng AB.
D. Mặt phẳng trung trực của đoạn thẳng AB.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y = x 3 - 3 x 2 tại 3 điểm phân biệt A, B, C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc
A. -2
B. -4
C. 0
D. 7 - 7 7