Đáp án C
Số tam giác có 3 đỉnh đều thuộc P là C 10 3
Đáp án C
Số tam giác có 3 đỉnh đều thuộc P là C 10 3
Trong mặt phẳng, cho tập S gồm 10 điểm, trong đó không có 3 điểm nào thẳng hàng. Có bao nhiêu tam giác có 3 đỉnh đều thuộc ?
A. 720.
B. 120.
C. 59049.
D. 3628800.
Trong mặt phẳng cho tập S gồm 10 điểm trong đó không có 3 điểm nào thẳng hàng. Có bao nhiêu tam giác có 3 đỉnh đều thuộc S?
A. 720.
B. 120.
C. 59049.
D. 3628800.
Trong mặt phẳng có 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng
a) Số tam giác mà các đỉnh của nó thuộc tập hợp các điểm đã cho là:
A. A 18 3
B. C 18 3
C. 6
D. 18!/3
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , . . . A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh được lấy trong 10 điểm trên là
Trong mặt phẳng cho 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng. Số tam giác có các đỉnh thuộc 18 điểm đã cho là
A . C 18 3
B . 6
C . A 18 3
D . 18 ! 3
Trong mặt phẳng cho 10 điểm phân biệt A1, A2,...,A10 trong đó có 4 điểm A1, A2, A3, A4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác.
B. 80 tam giác.
C. 96 tam giác.
D. 60 tam giác.
Cho tập hợp S gồm 15 điểm, trong đó không có ba điểm nào thẳng hàng. Từ 15 điểm thuộc tập hợp S ta xác định được bao nhiêu tam giác có 3 đỉnh là 3 trong 15 điểm đã cho?
A.
B.
C.
D.
Trong mặt phẳng, có 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
A. 15
B. 20
C. 60
D. Một số khác