Lời giải:
$A=\frac{2023a+b}{2023a-b}=\frac{(2023a-b)+2b}{2023a-b}$
$=1+\frac{2b}{2023a-b}=1+\frac{2}{2023\frac{a}{b}-1}$
Để $A$ nhỏ nhất thì $\frac{2}{2023.\frac{a}{b}-1}$ nhỏ nhất, tức là $2023\frac{a}{b}-1$ lớn nhất, hay $\frac{a}{b}$ lớn nhất.
Với điều kiện $1\leq a\leq b\leq 9$ và $a,b$ là số tự nhiên thì $\frac{a}{b}$ lớn nhất khi mà $a=b$
Khi đó: $A_{\max}=\frac{2023a+a}{2023a-a}=\frac{2024}{2022}=\frac{1012}{1011}$