Gọi \(d=ƯCLN\left(a,ab+128\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮d\\ab+128⋮d\end{matrix}\right.\Rightarrow128⋮d\\ \Rightarrow d\in\left\{1;2;4;8;16;32;64;128\right\}\)
Mà a,b lẻ nên d lẻ
Do đó \(d=1\left(đpcm\right)\)
Gọi \(d=ƯCLN\left(a,ab+128\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮d\\ab+128⋮d\end{matrix}\right.\Rightarrow128⋮d\\ \Rightarrow d\in\left\{1;2;4;8;16;32;64;128\right\}\)
Mà a,b lẻ nên d lẻ
Do đó \(d=1\left(đpcm\right)\)
Cho a b, là số tự nhiên lẻ, b thuộc N . Chứng minh rằng ƯCLN(a ,ab+ 128) =1
Cho a,b là các số tự nhiên, không cùng tính chẵn lẻ(a>b). Chứng minh rằng UCLN(a;b)=UCLN(a+b;a-b)
Cho a,b là các số tự nhiên, không cùng tính chẵn lẻ(a>b). Chứng minh rằng UCLN(a;b)=UCLN(a+b;a-b)
Mấy bài này khó quá,bạn nào giải được mình xin cảm ơn nha :
Bài 1 : Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số:
a) a và ab+4 là 2 số nguyên tố cùng nhau
b)Tìm n để n+2 và 3n+11 là 2 số nguyên tố cùng nhau (n là số tự nhiên)
Bài 2: Chứng minh rằng : S=1+3+5+.........+ (2n-1) (n thuộc N*) là số chính phương .
Cho a là số tự nhiên lẻ ,b là một số tự nhiên . Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau
Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
Cho a là số tự nhiên lẻ ,b là một số tự nhiên .Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau
cho a một số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng số a và ab +4 nguyên tố cùng nhau.
Cho a là số tự nhiên lẻ , b là một số tự nhiên . chứng minh rằng các số ab + 4 nguyên tố cùng nhau.