Rút gọn biểu thức T = a 2 . ( a - 2 . b 3 ) . b - 1 ( a - 1 . b ) 3 . a - 5 . b - 2 với a, b là hai số thực dương
A. T = a 4 . b 6
B. T = a 6 . b 6
C. T = a 4 . b 4
D. T = a 6 . b 4
Câu 1 : Cho biểu thức :
A= a^3+2a^2-1/ a^3+2a^2+2a+1
a/ Rút gọn biểu thức
B/ CMR nếu a là số nguyên âm thì giá trị biểu thức tìm đc của câu a là 1 phân số tối giản
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a/ Rút gọn biểu thức
b/ CMR nếu a là nguyên âm thì giá trị của biểu thức tìm đc câu a là 1 phân số tối giản
Cho các số thực dương a,b,c thỏa mãn f a b + b c + c a + 3 + f 2 - 2 a 2 - 2 b 2 - 2 c 2 = 1 với hàm số f x = 4 x 4 x + 4 Giá trị lớn nhất của biểu thức P = a 2 + b 2 + c 2 - 1 a + b + c + 3 bằng
A. 17 6
B. 3
C. 13 6
D. 13 4
15.
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\)
Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
16.
Xét các số thực a, b, c ( a khác 0) sao cho:
Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm m, n thỏa mãn: \(0\le m\le1;0\le n\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
17.
Cho ba số thực không âm a, b, c và thỏa amnx a+b+c=1.
Chứng minh rằng: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
18.
Cho ba số thực a, b, c. Chứng minh rằng:
\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Cho các số thực dương a,b,c. tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{3a^4+3b^4+25c^3+2}{\left(a+b+c\right)^3}\)
Cho a, b là các số thực dương. Rút gọn biểu thức P = a 3 b 2 4 4 a 12 b 6 3 được kết quả là
A. a b 2
B. a 2 b
C. ab
D. a 2 b 2
Cho a, b, c là 3 số dương. tìm Min của
P= (a+1)/(1+b*b)+ (b+1):(1+c*c)+ (c+1):(1+a*a)
cho 3 số dương a,b,c thay đổi thỏa mãn a2+b2+c2=3 .tìm gtnn biểu thức B=2(a+b+c)+1/a+1/b+1/c