Nguyễn Huệ Lam

Cho a, b, c là độ dài tương ứng của các cạnh BC, AC, AB của tam giác ABC. Các đường cao tương ứng là ha, hb, hc

Tìm giá trị nhỏ nhất của \(P=\frac{\left(a+b+c\right)^2}{h^2_a+h_b^2+h_c^2}\)

Mai Thanh Hải
21 tháng 12 2017 lúc 6:20

B c B' A K H

Lấy B' đối xứng với B qua AK  ( K thỏa mãn \(BK\perp AB\)\(AK\perp BK\))

CM được : \(\hept{\begin{cases}BB'=2BK=2AH=2h_a\\AB=AB'\end{cases}}\)

Ta có : \(BB'^2=CB'^2-BC^2\le\left(AB'+AC\right)^2-BC^2=\left(AB+AC\right)^2-BC^2\)

\(\Rightarrow\left(2h_a\right)^2=4h_a^2\le\left(b+c\right)^2-a^2\)

Tương tự , ta có : \(4h_b^2\le\left(a+c\right)^2-b^2\)        và        \(4h_c^2\le\left(a+b\right)^2-c^2\)

Suy ra : \(4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2-a^2-b^2-c^2\)

\(\Rightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)Hay \(P\ge4\)

" = " khi  \(B',A,C\) thẳng hàng \(\Rightarrow A\)là trung điểm của \(B'C\)\(\Rightarrow AH\)là trung tuyến \(\Delta ABC\Rightarrow\Delta ABC\)cân tại \(A\)

               Tương tự , \(\Delta ABC\)  lần lượt cân tại \(B,C\)

                Suy ra : \(\Delta ABC\)  đều 

Vậy \(MIN_P=4\)đạt được khi \(\Delta ABC\)đều

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Huệ Lam
Xem chi tiết
Amory Chris
Xem chi tiết
Nguyễn Phúc Lộc
Xem chi tiết
ILoveMath
Xem chi tiết
Phạm Thanh Trà
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
luffyxxxchan
Xem chi tiết
Phạm Thị Thu Huyền
Xem chi tiết