Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )
Khó quá do anh thien
\(A=3+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$
$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$$A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$
Thiếu đề nha bạn
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính
\(A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)\)
\(A=\left(1+\frac{-1}{1}\right)+\left(1+\frac{0}{1}\right)+\left(1+\frac{-1}{0}\right)\)
\(A=1+1+1\)
\(A=3\)
Nếu :a=-2 ; b=1 ; c=1
\(Th\text{ì}A=\left(1+-\frac{2}{1}\right)+\left(1+\frac{1}{1}\right)+\left(1+\frac{1}{2}\right)\)
\(A=-1+2+1,5=2,5\)
đã cho a,b,c khác 0 mà vẫn cho a=0
phân số thứ 3 trong ngoặc có mẫu =0 mà vẫn tính đc
Thay a = -2 ; b = 1 ; c = 1
Ta có : \(A=\left(1+\frac{-2}{1}\right)+\left(1+\frac{1}{1}\right)+\left(1+\frac{1}{-2}\right)\)
\(A=-1+2+1,5\)
\(A=2,5\)
\(TÍCHNHAMINHFHSLAIJ\)
Ta có:a+b+c=0=>a+b=-c
a+b+c=0=>b+c=-a
a+b+c=0=>a+c=-b
Khi đó A=(1+a/b)(1+b/c)(1+c/a)=(b+a/b)(c+b/c)(a+c/a)=(-c/b).(-a/c).(-b/a)=-1