Cho a, b, c, d, e > 0 thỏa mãn điều kiện a+b+c+d+e=4. Tìm giá trị nhỏ nhất của biểu thức P= (a+b+c+d)(a+b+c)(a+b)/abcde
Mình cần gấp lắm. Ai làm xong đầu tiên mình tick cho
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
cho a,b,c,d,e >0 có tổng =4.Tim GTNN cua P=((a+b+c+d)(a+b+c)(a+b))/abcde
Cho a,b,c,d là các số thực dương thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2.Tính a^2021 + b^2021 = c^2021+d^2021
cho a b c d là các số dương thỏa mãn a+b+c+d=2 tìm min a^2+b^2+c^1+d^2
1. Cho a, b, c, d thỏa mãn: abcd=1.
Tính gía trị biểu thức:
M= \(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+1}+\dfrac{d}{dab+da+d+1}\)
2. Cho các số a, b, c, d thỏa mãn: 0 ≤a, b, c, d ≤1.
Tìm giá trị lớn nhất của biểu thức:
N\(=\dfrac{a}{bcd+1}+\dfrac{b}{cda+1}+\dfrac{c}{dab+1}+\dfrac{d}{abc+1}\)
3. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: \(AB.BP+AC.CN=BC^2\)
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH,MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\) ≤ \(\dfrac{1}{64}S_3\)
Có bao nhiêu bộ số nguyên dương (a,b,c,d,e,f) thỏa mãn a>b≥ c≥ d≥ e≥ f và phương trình a!=b!+c!+d!+e!+f!?
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
cho a,b,c,d là các số dương thỏa mãn điều kiện a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2.
C/m rằng a^4+b^4=(a-d)^4=c^4+d^4