cho a,b,c>0 và a+b+z=1. tìm GTNN của:\(M=\frac{1}{1-2\left(ab+bc+ca\right)}+\frac{1}{abc}\)
Cho a,b,c ≥ 0 và a+b+c ≤ 3
Tìm GTNN của biểu thức B =\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
LÀM ƠN MÌNH ĐANG CẦN GẤP Ạ AI GIÚP MK VỚI
Cho các số a,b,c thỏa mãn 0<a,b,c<1 và ab+bc+ca=1 tìm gtnn của \(P=\frac{a^{^2}.\left(1-2b\right)}{b}+\frac{b.^2.\left(1-2c\right)}{c}+\frac{c^2.\left(1-2a\right)}{a}^{ }\)
Cho a+b+c=2 ; ab+bc+ca=1 ; abc=0
Tìm a , b , c .
Giùm mình với , mình gấp lắm ! Cảm ơn ạ !
cho a, b, c>0 sao cho a+b+c=1
tìm GTNN của \(A=\frac{1}{1-2\left(ab+bc+ca\right)}+\frac{1}{abc}\)
Cho a;b;c>0 . Tìm GTNN
\(A=a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\)
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
Bài 1: cho x khác 0, tìm Min \(T=8x^2-4x+\frac{1}{4x^2}+15\)
Bài 2: Cho a,b,c>0 và ab+bc+ca=3abc
Tìm Min: \(P=\frac{a^2}{c\left(c^2+a^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\)
Đề thi HSG đấy ạ!