\(\sqrt{a}+\sqrt{b}\\=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\\ =\sqrt{a+b+2\sqrt{ab}}=\sqrt{3+2\sqrt{1}}=\sqrt{5}\)
\(=>a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\\ =\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\ =\sqrt{5}\cdot\left(3-\sqrt{1}\right)\\ =2\sqrt{5}\)