\(\sqrt{a\left(8a+b\right)}=\dfrac{1}{3}\cdot\sqrt{9a\left(8a+b\right)}< =\dfrac{1}{3}\cdot\dfrac{9a+8a+b}{2}=\dfrac{1}{6}\left(17a+b\right)\)
\(\sqrt{b\left(8b+a\right)}< =\dfrac{1}{6}\left(17b+a\right)\)
=>\(\sqrt{a\left(8a+b\right)}+\sqrt{b\left(8b+a\right)}< =3\left(a+b\right)\)
=>\(\dfrac{a+b}{\sqrt{a\left(8a+b\right)}+\sqrt{b\left(8b+a\right)}}>=\dfrac{1}{3}\)