\(A=7+7^2+7^3+...+7^{120}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(A=7.57+7^4.57+...+7^{118}.57\)
\(A=57\left(7+7^4+...+7^{118}\right)\)
\(\Rightarrow A⋮57\)
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57