a) Để A là phân số
\(\Rightarrow n-1\ne0\)
\(\Rightarrow n\ne1\)
=> A là phân số khi \(n\ne1\)
b) Vì \(n\inℤ\)
\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)
mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)
\(\Rightarrow3n-3+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+7⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
nên \(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(n-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(n\in\left\{2;0;8;-6\right\}\)