Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{88}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{88})=13(3+3^4+...+3^{88})\vdots 13$
--------------------
$A=(3+3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9+3^{10})+...+(3^{86}+3^{87}+3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2+3^3+3^4)+3^6(1+3+3^2+3^3+3^4)+...+3^{86}(1+3+3^2+3^3+3^4)$
$=(1+3+3^2+3^3+3^4)(3+3^6+...+3^{86})$
$=121(3+3^6+...+3^{86})=11.11.(3+3^6+...+3^{86})\vdots 11$