Trong mặt phẳng tọa độ Oxy, cho điểm A(2;1) và đường thẳng Δ: x-2y+5=0. Điểm M thuộc đường thẳng Δ sao cho AM = \(\sqrt{10}\) là:
giúp tớ nhé các bạn
Cho A(m;3) B(2;1) C(-4;5) a) tìm điều kiện của m để A,B,C là 3 đỉnh của một tam giác b) tìm toạ độ trọng tâm G của tam giác ABC theo m. Xác định m để G nằm trên đường thẳng d: { x= 1+t { y= 5-2t
Cho A(m;3) B(2;1) C(-4;5) a) tìm điều kiện của m để A,B,C là 3 đỉnh của một tam giác b) tìm toạ độ trọng tâm G của tam giác ABC theo m. Xác định m để G nằm trên đường thẳng d: { x= 1+t { y= 5-2t
Cho đường thẳng Δ:3x−4y+2=0.Δ:3x−4y+2=0.
a) Viết phương trình của Δ dưới dạng tham số.
b) Viết phương trình của Δ dưới dạng phương trình theo đoạn chắn.
c) Tính khoảng cách từ mỗi điểm M(3;5),N(−4;0),P(2;1)M(3;5),N(−4;0),P(2;1) tới Δ và xét xem đường thẳng cắt cạnh nào của tam giác MNP.
d) Tính góc hợp bởi Δ và mỗi trục tọa độ.
Cho A(-3;4) B(2;1) C(-4;5)
a lập phương trình tổng quát của AC
b, lập phương trình đường tròn tâm B tiếp xúc AC
c, lập phương trình tổng quát đường cao AH
d, lập phương trình đường trung tuyến AM
e, Lập phương trình đường tròn đi qua A B C
Câu 5: Cho A(-1;1), B(0;3), C(-4;5)
a) Tìm E để ABCE là hình bình hành.
b) Tìm M sao cho AM +5 MC = -3MB
c) Tính chu vi tam giác BCE
d) Gọi G là trọng tâm tam giác ABC, tính góc AGC.
cho đường thẳng Δ : x + y - 2 = 0 và điểm A( 2; 2). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho khoảng cách từ A đến M nhỏ nhất.
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
a)Viết phương trình đường tròn đi qua 3 điểm A(-1;1);B(3;1);C(1;3)
b)Cho (C):x2+y2-4x+6y+3=0 và (Δ):3x-y+m=0.Tìm m để đường thẳng (Δ) tiếp xúc với đường tròn (C)