\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6\left(1+2^2+...+2^{58}\right)\)
Vì \(6\left(1+2^2+...+2^{58}\right)⋮6\Rightarrow A⋮6\left(đpcm\right)\)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)