Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Cho a,b,c>0 và a+b+c=3. Tìm giá trị nhỏ nhất của P=\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)
Cho a,b là các số thực thỏa mãn a≥1,b≥2. Tìm giá trị nhỏ nhất của biểu thức P=\(a^2\)+\(b^2\)+\(\dfrac{1}{a+b}\)+\(\dfrac{1}{b}\)
Cho a,b,c >0 thoả mãn ab+bc+ca=3. Tìm giá trị nhỏ nhất của
P=\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\)
a)Tìm giá trị nhỏ nhất của biểu thức Q=\(\dfrac{x^2-4x+1}{x^2}\)
b)Tìm a,b,c∈N*:(a-\(\dfrac{1}{b}\))(b-\(\dfrac{1}{c}\))(c-\(\dfrac{1}{a}\))∈N*
HELP
Cho A = \(\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\) và B = \(\dfrac{2}{x+1}\)
a) Chứng tỏ A = \(\dfrac{1}{x}\)
b) Rút gọn P = A : B
c) Tìm x để P = 3
d) Tìm giá trị nhỏ nhất của biểu thức C = \(2x^2\). P
e) Tìm x để P > \(\dfrac{1}{2}\)
Giúp mình vs :)
TÌm giá trị nhỏ nhất của \(P=\dfrac{1}{1+a^2+b^2}+\dfrac{3}{2ab}\)
Cho a,b,c>0 và a+b+c=1.
Tìm giá trị nhỏ nhất của: A= \(\dfrac{1}{1-2\left(ab+ac+bc\right)}\)+\(\dfrac{1}{abc}\)
Cho biểu thức D=(\(\dfrac{a-1}{3a+\left(a-1\right)^2}\)-\(\dfrac{1-3a+a^2}{a^3-1}\)-\(\dfrac{1}{a-1}\)) : \(\dfrac{a^2+1}{1-a}\)
a) Tìm những giá trị của a để D xác định
b)Rút gọn D
c)Tìm giá trị của a để \(\dfrac{1}{D}\)nhỏ nhất và tìm giá trị nhỏ nhất đó