Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thao Thanh

Cho 6 số nguyên khác 0: a1<a2<a3<a4<a5<a6 và thỏa mãn: tổng của hai số bất kì trong các số đó là số dương,

|a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 và a1.a2.a3.a4.a5.a6 <0. Tính tổng: a1 + a2 + a3 + a4 + a5 + a6.

Trần Thị Loan
3 tháng 6 2015 lúc 22:42

+) Nếu a2 < 0 => a1 < 0 => tổng a1 + a2 < 0 trái với giả thiết

=> a2 > 0  => 0< a2<a3<a4<a5<a6

Mà a1.a2.a3.a4.a5.a6 <0 => a1 < 0 

Vì a1 + a2 > 0 => |a1| < |a2|

=> |a1| < |a2| < |a3| < |a4| < |a5| < |a6

=>6. |a1|  <  |a1| + |a2| + |a3|+|a4|+|a5|+|a6| = 21 => |a1| < 3,5 Mà |a1| > 0 và nguyên

=> |a1| = 1 hoặc 2 hoặc 3

+) Nếu  |a1| = 1 => a1 = -1 và   |a2| + |a3|+|a4|+|a5|+|a6| = 21 - 1 = 20  

Mà |a2| + |a3|+|a4|+|a5|+|a6|  = a2 + a3 + a4 + a5 + a6 

=> a1 + a2 + a3 + a4 + a5 + a6. = -1 + 20 = 19

+) Nếu |a1| = 2 => a1 = - 2 và   |a2| + |a3|+|a4|+|a5|+|a6| = 19

=>  a1 + a2 + a3 + a4 + a5 + a6. = -2 + 19 = 17

+) Nếu |a1| = 3 => a1 = - 3 và   |a2| + |a3|+|a4|+|a5|+|a6| = 18

=>  a1 + a2 + a3 + a4 + a5 + a6. = - 3 + 18 = 15

Vậy.................

Ếch Phú Điền
5 tháng 6 2015 lúc 7:13

ĐÁP SỐ: a1 + a2 + a3 + a4 + a5 + a6 = 19

LỜI GIẢI:

Nhận thấy: |a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 = 1+2+3+4+5+6 suy ra { |a1|;|a6|} = {1;6}

Do a1.a2.a3.a4.a5.a6 <0 suy ra số lượng phần tử số nguyên âm là 1, hoặc 3, hoặc 5 phần tử.

Từ giả thiết: tổng của hai số bất kì trong các số đó là số dương ta suy ra 2 điều:

(1) Không có nhiều hơn 1 số nguyên âm.

(2) Giá trị tuyệt đối của số nguyên âm đó là nhỏ nhất.

Vậy ta tìm được giá trị các số nguyên phù hợp:

a1 =-1

a2 = 2

a3 = 3

a4 = 4

a5 = 5

a6 = 6

KẾT LUẬN: a1 + a2 + a3 + a4 + a5 + a6 = 19.

Bạn thử giải toán trên trang này xem nhé

Ếch Phú Điền
5 tháng 6 2015 lúc 7:14

ĐÁP SỐ: a1 + a2 + a3 + a4 + a5 + a6 = 19

LỜI GIẢI:

Nhận thấy: |a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 = 1+2+3+4+5+6 suy ra { |a1|;|a6|} = {1;6}

Do a1.a2.a3.a4.a5.a6 <0 suy ra số lượng phần tử số nguyên âm là 1, hoặc 3, hoặc 5 phần tử.

Từ giả thiết: tổng của hai số bất kì trong các số đó là số dương ta suy ra 2 điều:

(1) Không có nhiều hơn 1 số nguyên âm.

(2) Giá trị tuyệt đối của số nguyên âm đó là nhỏ nhất.

Vậy ta tìm được giá trị các số nguyên phù hợp:

a1 =-1

a2 = 2

a3 = 3

a4 = 4

a5 = 5

a6 = 6

KẾT LUẬN: a1 + a2 + a3 + a4 + a5 + a6 = 19.

Tác giả Trần Thanh Đức và tác giả Ếch Phú Điền là một nhé các bạn.


Các câu hỏi tương tự
mina Chi
Xem chi tiết
mina Chi
Xem chi tiết
Đỗ Thu Giang
Xem chi tiết
Ngọc May
Xem chi tiết
Lil Shroud
Xem chi tiết
Nguyễn Dũng
Xem chi tiết
Giang Vũ Ngân
Xem chi tiết
Phạm Tiến Đạt
Xem chi tiết
Vũ Lan Anh
Xem chi tiết
Bùi Minh Quân
Xem chi tiết