Ta có: \(4a^2+b^2=5ab\)
\(\Leftrightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\).Mà \(2a>b>0\Rightarrow4a>b>0\Rightarrow4a-b>0\)
Do đó \(a-b=0\Leftrightarrow a=b\)
Thay b bởi a,ta có: \(M=\frac{ab}{2a^2-b^2}=\frac{a^2}{2a^2-a^2}=\frac{a^2}{a^2}=1\)