Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Anh

Cho 3 số thực a,b,c dương thoả mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3\) . Chứng minh:

\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)

Thắng Nguyễn
4 tháng 9 2016 lúc 21:14

Bạn có thể tham khảo cách này

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{2}{b}=y\\\frac{3}{c}=z\end{cases}}\Rightarrow x+y+z=3\)

BĐT thành \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\left(1\right)\)

ta sẽ dùng Bđt Cói \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự rồi cộng lại

\(\left(1\right)\ge x+y+z-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu = khi \(x=y=z=1\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

Thắng Nguyễn
4 tháng 9 2016 lúc 21:07

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{2}{b}\\z=\frac{3}{c}\end{cases}\Rightarrow}\hept{\begin{cases}x,y,z>0\\x+y+z=3\end{cases}}\)

Khi đó ta có BĐT cần chứng minh tương đương với:

\(P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Ta có: \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+xy^2+yz^2+zx^2}\)

Ta cũng có: \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)\left(x^2+y^2+z^2\right)\)

\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x\)

\(\ge3\left(x^2y+y^2z+z^2x\right)\)

\(\Rightarrow x^2y+y^2z+z^2x\le x^2+y^2+z^2\)

Chứng minh tương tự ta có: \(xy^2+yz^2+zx^2\le x^2+y^2+z^2\)

\(\Rightarrow P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}\)

Dấu = khi \(x=y=z\)hay\(\hept{\begin{cases}a=1\\b=2\\b=3\end{cases}}\)

Thắng Nguyễn
4 tháng 9 2016 lúc 21:19

cách ở dưới thiếu c=3 nhé =))


Các câu hỏi tương tự
Nguyễn Bá Huy h
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Hưng
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Hồ Lê Thiên Đức
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Hưng
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết