Với a,b,c dương (không phải độ dài 3 cạnh tam giác)
Chứng minh a4+b4+c4-2a2b2-2b2c2-2c2a2 < 0
cho ba số phân biệt a,b,c. Chứng minh: A=a^4(b-c)+b^4(c-a)+c^4(a-b) luôn khác 0
Tính giá trị của biểu thức :a4+b4+c4 biết rằng a+b+c=0 và:
a,a2+b2+c2=2 ; b,a2+b2+c2=1
mik cần gấp!!!
Tính giá trị của biểu thức a4 + b4 + c4, biết rằng a + b + c =1,ab+bc+ca=-1 và abc=-1
Chứng minh rằng: a4(b-c)+b4(c-a)+c4(a-b) luôn khác 0 nếu a, b, c phân biệt .
\(\text{a4 +b4+c4=(a2+b2+c2)^2/2}\)
cho a+b+c=0
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
Chứng minh: (a-b)(b-c)(c-a)(a^2+b^2+c^2+ab+bc+ca) khác 0 khi a;b;c là 3 số phân biệt
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)